

IEC TC 31 standards for Ex Equipment

standardisation for the hydrogen economy

May 29th, 2024

Dr.-Ing. Martin Thedens

Head of PTB-Department "Explosion Protection in Sensor Technology and Instrumentation"
Immediate Past Chair of ExNBG
IEC TC 31 Chair "Equipment for Explosive Atmospheres"

International Standardisation

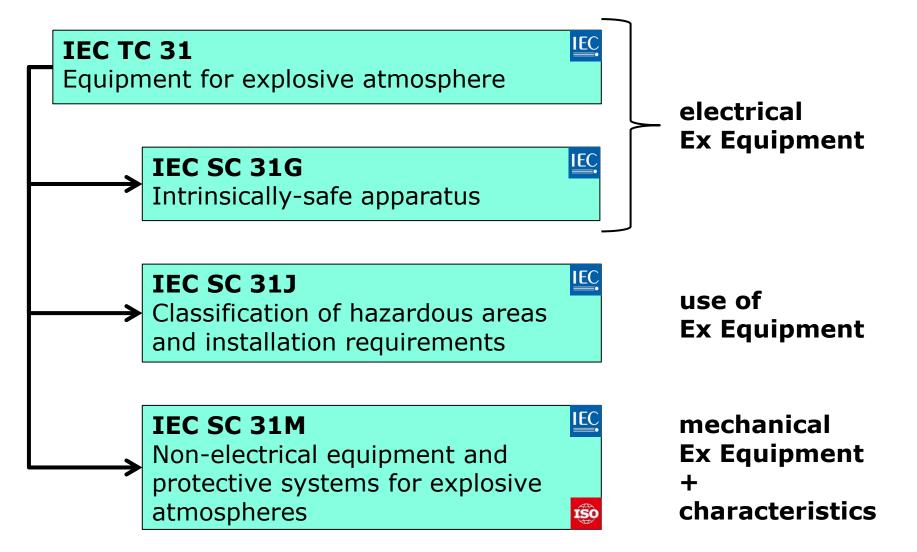
IEC TC 31

IEC TC 31

Equipment for explosive atmospheres

TC 31 Scope

To prepare and maintain international standards relating to equipment for use where there is a hazard due to the possible presence of explosive atmospheres of gases, vapours, mists or combustible dusts


1948	1957	2003	2005	2023
Conception	1 st standard 'flameproof'	IECEx 1 st certificate	SC 31M joint ISO/IEC work begins	>50 publications

IEC 60079 and ISO/IEC 80079 series used for 1st, 2nd and 3rd party assessment

IEC TC 31 and the 3 SCs

IEC TC 31 – overview

Classification and characterisation of explosion hazards and hazardous areas

Ventilation systems

Electrical installations and maintenance

Electrical Ex Equipment

Flammable properties of materials gas/vapour/dusts

Mechanical Ex Equipment

Gas detectors – design and use

QMS, assemblies and others

New projects:

Ignition systems, Portable electronic equipment, Flame arrestors, Personnel competency, Explosion venting devices, Basic Safety Publication

Hydrogen

IEC TC 31

IEC TC 31 and H2

- IEC TC 31 standards don't care what colour the hydrogen is.
 Green, blue or brown are all the same for IEC TC 31.
- Hydrogen diffuses very easily through materials or seals, but also quickly escapes upwards

 Explosion protection characteristics
--

	hydrogen	ammonia	methane
CAS-No.	1333-74-0	7664-41-7	74-82-8
Equipment group	IIC	AII	IIA
Lower flam. limit [Vol. %]	4,0	15,0	4,4
Upper flam. limit [Vol. %]	77,0	33,6	17,0
Auto ign. temp. [°C]	560	630	600
Temperature class	T1	T1	T1
Min. ignition energy [mJ]	0,019	14	0,28

- → atmospheric conditions: -20 °C to +60 °C and 0.8 bar to 1.1 bar
- Reaction rate is high hydrogen explosions are very fast and difficult to stop

IEC TC 31 & others and H2

- 3 principles of explosion protection
- IEC TC 31 defines the "explosive atmosphere"
- Technical measures are important to avoid an explosive atmosphere, for example:
 - closed system
 - (permanently)
 technically sealed
 - exclusion of oxygen

Prevent the <u>formation</u> of an explosive atmosphere

2.

Prevent the <u>ignition</u> of an explosive atmosphere

3

Limit the impact of an explosion to a tolerable level

Requirements should be in the scope of other TCs/SCs of IEC or ISO, such as "ISO TC 197 Hydrogen technologies" or "IEC TC 105 Fuel cell technologies"

Typically regulated by occupational safety measures!

IEC TC 31 standards and H2

• IEC TC 31 standards are applicable, if the explosive

atmosphere is present.

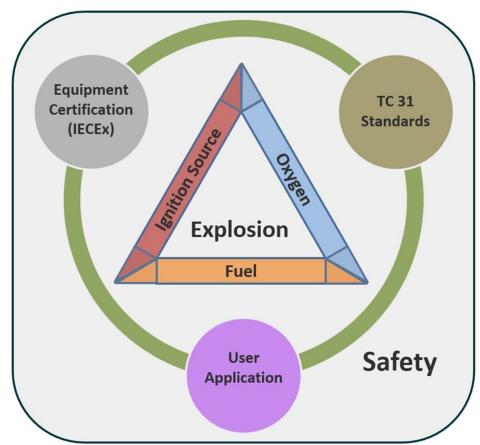
Classification of the

- explosive atmosphere
- hazardous area
- Selection of suitable Ex Equipment
- Design, manufacturing & testing of Ex Equipment
 - electrical & mechanical
- Installation and safe use
 - technical requirements
 - guidance for electrostatic
- no requirements for certification
- no regulations for a market access
- no regulations for occupational safety measures

Prevent the <u>formation</u> of an explosive atmosphere

Prevent the <u>ignition</u>
of an explosive atmosphere

Limit the impact of an explosion



IEC TC 31 and H2 → TO DO

- ? Explosion characteristics
 - → outside atmospheric conditions
 - → for mixtures with other gases or for hybrid mixtures
- ? Requirements for Ex Equipment
 - → for higher pressures (e.g. pressures up to 900 bar for storage)
 - → for higher temperatures (e.g. operating temperature of solid oxide electrolyzer cells *SOEC* is between 500 °C and 850 °C)
- ? Use of LOHC (liquid-organic hydrogen carrier)
- ? Requirements for flame arrestors
- ? Guidance documents needed, such as: "How to avoid an explosive atmosphere" or "How to handle hydrogen"
- ! Supporting IECEx and TCs/SCs of IEC and ISO
 - → IEC TC 31 has recently formed AG 59 "Hydrogen Advisory Group" recognizing the growth in this field to help with developments and coordination
 - → AG 59 can support other groups related to explosion protection
- ! Awareness of overlap with other TCs/SCs of IEC and ISO
 - → Duplicated work & conflicting requirements shall be avoided

Source: Neil Dennis (AECOM)

Physikalisch-Technische Bundesanstalt Bundesallee 100, D-38116 Braunschweig

Dr. Martin Thedens

Tel.: +49 531 592-3600

E-Mail: martin.thedens@ptb.de

www.ptb.de

